2. SOLUBLE GROUPS

§ 2.1. Conjugates and Commutators

I’ll begin by reminding you of some basic facts. Let
X, ¥ € G. The conjugate of x by y is XY = y~!xy. The map
x—x9, for a fixed g, is an automorphism of G. We denote
it by ©(g).

The map g—0(g) is a homomorphism from G to
the automorphism group Aut(G) of G and the image is
denoted by Inn(G). The ®(g) are called inner
automorphisms. Any other automorphisms are called
outer automorphisms.

The kernel of the homomorphism @ is clearly the
centre Z(G) and so, by the First Isomorphism Theorem,
G/Z(G) = Inn(G).

We also conjugate subgroups. fH<Gandg € G
thenHY=gHg={g*hg|h e H}. H9<Gforallg € G
andH<Gifandonly if HH=H forall g € G.

Closely related to conjugates are commutators. The
commutator of x and y is x*x¥, which we can write out
in full as x~ty~1xy. We denote it by [X, y].

The name derives from the fact that [x, y] = 1 ifand
only if x commutes with y. The number of commutators
is a crude measure of how far the group departs from
being abelian.

Two identities that hold for commutators are:
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(1) [x, yz] = [x, z] [x, y]* and

(2) [xy, 2] = [x, 2’ [y, z].

These can be proved by simply writing both sides of each
equation in full.

Extended commutators are defined inductively by:
[X1, X2, ..., Xn, Xn+1] = [[X1, X2, ..., Xn], Xn+1].
An interesting identity involving commutators of length
3is:
X,y hzP Iy, 278 X [z x 7Ly = 1
Again one can simply write out the left-hand side of this
identity and cancel it down to 1. But it’s a lot of work.
The proof can be made easier by putting
u = xzxtyx, v = yxyzy and w = zyz xz.

Then the identity becomes (u™v)(v-tw)(wtu) = 1.

§ 2.2. The Derived Series

Unfortunately the set of commutators is not a
subgroup, although it does satisfy two of the three criteria
for a subset to be a subgroup. It contains the identity and
it is closed under inverses, because [y, x] = [x, y] ™
However, in general, it isn’t always closed under
products.

The simplest example is the free group on 4
generators (A, B, C, D | ). Clearly the product of the two
commutators [A, B] and [C, D] isn’t a commutator.
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It would be nice to give a small finite example of
such a group, but the smallest such examples are two
groups of order 96.

So we’re forced to define the derived subgroup of
a group G to be G’ = the group generated by all the
commutators.

Clearly (G x H)' = G’ x H' for all groups G, H. If
H is a normal subgroup of G, what is (G/H)'? Is it G'/H’?
No, because any subgroup of G/H has to have the form
K/H for some subgroup K of G. Is it G’'/H? No, because a
subgroup of G/H has to have the form K/H where H < G.
In fact (G/H)' = G'H/H.

In Volume 1 we proved that the derived subgroup
of G is the largest normal subgroup for which the quotient
group is abelian. This is usually the quickest way of
finding it. We can continue the process, giving a whole
series of subgroups.

We define G to be (G’) and G'"" = (G"")’ etc. We
denote the n-th derived subgroup (the result of n such
steps) by G™ so G’ can be written as G©,

In other words we define G™ inductively by:
GO =G; GM™D = G™ forall n.

This results in a chain of subgroups:
G>G'>2G">G® >G> ...

25



Each subgroup is normal in the one before and the
quotients of successive terms are abelian. Such a series is
called the derived series for G.

Example 1: S4' = A4, S4" =Vsand S/ =S5,8 =1

Here V. ={l, (12)(34), (13), (24), (14)(23)} is the normal
subgroup of order 4. Because A4/V,4 has order 12/4 = 3, it
is cyclic, and hence abelian, so S;"" = Ay’ < V4. Thus S,
has order 1, 2 or 4. It’s not 1 because A4 IS not abelian.
It’s not of order 2 because then A4/A, would have to be
cyclic of order 6, yet A4 has no elements of order 6.

This leaves S,/" = Ay’ = V4. Finally, since V4 is abelian
S/ =V, =1.

§ 2.3. Soluble Groups

The class of soluble groups is § = @". Thus a group

G issoluble if and only if, for some n, there is a subnormal
series from 1 to G, with each quotient being abelian.

The  smallest GO UBLE AND INSOLUBLE

possible value of n is

called the soluble

length of G. We denote + = SOLUBLE LiquiD
the class of soluble .,
groups of length at ———
most n by &n. Clearly + = INSOLUBLE LIOUID
So = | and S = Q. The
groups in & are called
metabelian groups.
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Theorem 1:

(1) Subgroups of soluble groups are soluble.

(2) Quotients of soluble groups are soluble.

(3) If G/H is soluble and H is soluble then G is soluble.
Proof: These follow immediately from Theorem 2 of
Chapter 1 and the fact that A is both subgroup and
quotient closed. % ©

Clearly a group G is soluble if and only if G™ =1
for some n. Moreover the value of the smallest such n will
be the soluble length of G, as we now show.

Theorem 2: If n is the smallest integer such that GM™ =1
then the soluble length of G is n.

Proof: Let n be the soluble length of G.

Then there exists a subnormal series

1=Gp<G1<...<Gp=0G
such that each Gj.+1/G;j is abelian and n is the smallest such
value. Suppose that G™ = 1 and m is the smallest such

value.
Since the derived series has abelian quotients we

have n <m. But Gj.;' < Gj for all i and so G™M < Gy = 1.
Hencem<n. Thusm=n. %©

The soluble length of a subgroup or quotient group
cannot exceed that of the group itself, but it may be less.
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There are two ways that a group can fail to be
soluble. The derived series might continue to descend
indefinitely.

G>G'>G">G¥>GW> .

Of course this can only occur for an infinite group.
But a group, even a finite one, can fail to be soluble by
virtue of its derived series getting ‘stuck’ at some point,
that is, where it reaches a subgroup that is not the identity
but which, like the identity subgroup, is equal to its own
derived subgroup. One very special way this can happen
is for a non-abelian group to have no normal subgroups
other than itself and the identity.

§ 2.4. Simple Groups
A group G that has no normal subgroups, apart
from G itself and 1, is called a simple group. Such groups
are ‘simple’ so far as their lattice of normal subgroups
goes. But in other respects most of them are far from
simple, in the normal sense of the word. But let’s get the
really simple simple groups out of the way.
® Groups of prime order
the (necessarily  cyclic) are
s ' m p l e simple groups. This is a
group direct  consequence  of
Lagrange’s Theorem. These
groups, together with the trivial group 1, are in fact the
only abelian simple groups. (Why?).
So the only simple groups of real interest are the
non-abelian ones. Among these the finite non-abelian
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simple groups have attracted an enormous amount of
interest over the last hundred years. A classification of the
finite simple groups has now been finished. But has been
an enormous task.

The Guinness Book of Records, in an earlier
edition, mentioned only two theorems of mathematics.
Pythagoras’ Theorem holds the record for the largest
number of different proofs (about 350) and of course
everybody has heard of Pythagoras’ Theorem, even if
they can’t recall even one of these many proofs. But very
few people have heard of the Classification Theorem for
Finite Simple Groups. Its claim to fame is the sheer size
of its proof. Nowhere does the proof appear in its entirety,
and probably it will never appear complete in one
publication. It is a mosaic of thousands of mathematical
papers by hundreds of group theorists, all building on one
another. If all the papers necessary for a complete proof
were ever assembled in one place it is estimated that they
would occupy about 15,000 pages (the equivalent of a
large, multi-volume encyclopaedia)!

The theorem states that every finite simple group is
either in one of 19 families or they are one of 15 sporadic
or one-off examples.

Among the infinite families of finite simple groups are:
e C, for prime p (these, and 1, are the only finite
abelian simple groups).
e A, forn>5, the alternating groups
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e PSL(n, p™ for a prime p and integers m and n
where n > 3 or n = 2 and q > 4, which I'll now
define.

PSL(n, p") is SL(n, pM/Z where SL(n, p™) is the group
of all n x n matrices, with determinant 1, over the field
GF(p™) of size p™, and Z is its centre, the set of all n x n
scalar matrices Al where A is an n’th root of unity.

In addition to the above three families, and a few
more, there are 15 sporadic finite simple groups. These
don’t belong to any one of the infinite families.

The smallest is the Mathieu group My;, of order
7920. The largest sporadic groups is called the Monster,
with order greater than -
8 x 10%, ol
Another is the so-
called Baby Monster
which only has order
about 4 x 10%,

Avw.... look - |
15 the buly monsters

@ ..ONLY 4¢10®
&

We now turn our attention to showing that A, is
simple for n > 5. This fact is central to the proof of the
insolubility of the quintic. Polynomials of degree 5 or
more cannot be solved by radicals simply because A, is
simple for n > 5.
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§ 2.5. The Simplicity of An

Lemma: A, is generated by cycles of length 3.

Proof: Every even permutation is a product of an even
number of transpositions. We show that any product of
two transpositions g = (X1 X2)(X3 X4) is a product of cycles
of length 3.

Case | the transpositions are disjoint:
Then g = (X1 X2 X3)(X1 X4 X3).

Case Il: the transpositions have one symbol in
common: say X4 = X;: Then g = (X1 X2 x3). ¥ ©

Theorem 3: If n > 5, all cycles of length 3 are conjugate
in An.

Proof: Of course any two 3-cycles are conjugate in Sp.
But are they conjugate in Ay? As often happens it might
be that the 3-cycles split into two conjugacy classes when
we restrict ourselves to An.

Let g = (X1 X2 X3), h = (y1 Y2 y3) be any two cycles of
length 3. Then g = k~*hk for any permutation k that maps
X1 to y1, X2 t0 y2 and X3 to ys. With at least two more
symbols to complete the definition it’s possible to arrange
for k to be even (just add a disjoint 2-cycle if necessary).

For n < 3 there are no cycles of length 3. Forn=3
or 4 there are two conjugacy classes of cycles of length 3

in Ap. %O

31



Theorem 4: A, is simple for n > 5.

Proof: Suppose that n > 5 and suppose that H is a proper
non-trivial normal subgroup of An.

If h € Hand g € A, then, since H is normal in Ap,

[9,h] = (g*h™'g)h € H.

We’ll show that H contains a cycle of length 3.
Since all cycles of length 3 are conjugate to one another
in A, this would mean that H must contain every cycle of
length 3 and so must contain every even permutation,
contradicting the fact that H < An,.

Choose 1 #h € H.

Case 1 h = (xxxx...)...: Without loss of generality we
may let h=(1234...)...
Let g = (123). Then [g, h] = (132)(234) = (142).

Case 2 h = (xxx)(xxx) ...:

Without loss of generality let h = (123)(456)...
Let g = (145).

Then [g, h] = (154)(256) = (16254). Go to case 1.

Case 3 h = (xxx)(xx)(xx) ...: Then h? = (xxx).
Case 4 h = (xx)(xx)(xx) ... : Without loss of generality
let h=(12)(34)(56) ... and let g = (12345).

Then [g, h] = (15432)(21436) = (153)(246).
Go to case 2.
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Case 5 h = (xx)(xx): Without loss of generality let
h=(12)(34) and let g = (12345).

Then [g, h] = (15432)(21435) = (12453). Go to case 1.
%O

In fact A, is simple for all values of n except n = 4.

Forn <2, Anistrivial. For n = 3 it is cyclic of order 3.
And A, isn’t simple because it contains the proper, non-
trivial, subgroup
Vi ={l, (12)(34), (13)(24), (14)(23)}.
Since As is the smallest non-abelian simple group
it is the smallest group that is not soluble.

§ 2.6. Small Groups are Soluble

All small finite groups are soluble. What do | mean
by small? You’ll see.

Groups of prime order are cyclic, and hence
soluble. Groups of order 2p are cyclic or dihedral and so
are soluble. Since the centre of a non-trivial p-group is
non-trivial we can see that all p-groups are soluble. The
theory of Sylow subgroups is a powerful tool in dealing
with other cases.

Lemma: Suppose that |G| = p"m for some m, n and prime
p which doesn’t divide m. Suppose that |G| > p.

Suppose that for every integer of the form h = 1 + kp that
divides m, either h =1 or h! <|G|.

Then G is not simple.
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Proof: Let The number of Sylow p-subgroups be h.
Then h =1 + kp and divides m.

Hence h =1 or h! <|G]|.

Case I: h=1: Then G has a unique Sylow p-subgroup, P,
which must be normal. If P = G then G is a p-group and
so is not simple.

Case ll: h! <|G|:

G permutes the Sylow p-subgroups by conjugation.
Hence there is a homomorphism ®:G—S. Since |G| > |Sy|
K =ker @ > 1. If K = G then every Sylow p-subgroup is
normal in G (and hence there is only one of them.) So K
is a proper non-trivial normal subgroup and so is not
simple. % ©

Theorem 5: All group of order up to 59 are soluble.
Proof: Let |G| = n < 60.

If n=1, G is soluble of length 0.

The following table lists values of n up to 59, together
with the values of p, n and m in cases where the above
lemma shows that groups of order m are soluble.

Gl p nm |Gl p nm |G p nm
2 |2 |1]1| 21]7 |1[3| 41]41]|1]1
3 |3 |1/1| 22[11]1]2| 427 [1]6
4 |2 |2)1| 23{23[1]1| 43 ]43|1]1
5 |5 [1]1| 24]2 [3[3] 44 [11]|1 |4
6 |3 |1]2| 25|5 |2[1| 45|5 |19
7 |7 |1]1] 26 [13[1]2 | 46 |23|1|2
8 |2 [3]1| 27 (3 [3]|1] 47 [47]1]1
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9 |3 |2]|1 28 |7 |14 | 48 |2 |43
10 |5 |12 29 (29111 49 17 |21
11 |11 1|1 30 |5 |1]|6 50 |5 |1]10
12 |2 |23 31 (31|11 51 1713
13 13|11 32 |2 |5]1 52 |13|1 |4
14 |7 1|2 33 (11|13 53 |93 |11
15 |5 |13 34 11712 54 |3 |32
16 |2 |41 35 |7 |1]|5 55 [11]1 5
17 171 |1 36 |3 |24 56 |7 |1]8
18 |3 |2 |2 37 37|11 57 (19113
19 (1911 38 (19/1|2 58 (29112
20 |5 |1]4 39 [13|1]3 599 [99]1]1
40 |5 |18

The two values that are in bold don’t fit the lemma
and we need to work a bit harder.

|G| = 30: If agroup of order 30 is not soluble it must have
10 Sylow 3-subgroups and 6 Sylow 5-subgroups.

Each Sylow 3-subgroup is a C3 and has 2 elements of
order 3. Each Sylow 5-subgroup is a Cs and has 4
elements of order 5. Moreover all these subgroups must
be disjoint (only having the identity in common). This
gives 20 elements of order 3 and 24 elements of order 5.
But this is already more than |G|, a contradiction.

|G| = 56: If G is not soluble we’d need to have 7 Sylow
2-subgroups and 8 Sylow 7-subgroups. The Sylow 2-
subgroups have order 8. Thus there are 48 elements of
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order 7, leaving just 8 elements of all other orders. Just
one Sylow 2-subgroup would use up all of these and so
there can’t possibly be 7 Sylow 2-subgroups. % ©

So all groups of order less than 60 are soluble and
Ay, of order 60 is not soluble, so it is therefore the smallest
non-soluble group.

In my notes on Representation Theory | show that
all groups of order p2q°, where p, g are distinct primes,
are soluble. This would have greatly simplified the above
analysis. However that theorem requires a considerable
amount of representation theory and number theory to
prove.
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EXERCISES FOR CHAPTER 2

Exercise 1: For each of the following statements
determine whether it is true or false.

(1) The derived subgroup is the set of all commutators.
(2) The inverse of a commutator is a commutator.

(3) A conjugate of a commutator is a commutator.

(4) The product of two commutators is a commutator.
(5) G/G' is always abelian.

(6) Sy is a simple group for all n.

(7) If G is a non-abelian simple group G’ = G.

(8) A, is simple for all n.

(9) (G/H) = G'/H.

(10) All groups whose order is less than 60 are soluble.

Exercise 2: Prove that the following identities hold for
commutators:

@ [y xP =[xyl

(b) (xy)> = x*y?y, X1[y, X, YI;
©) Ix, v, Y1.ly, z x '] = 1.
Exercise 3: If n > 1, find D,y'.

Exercise 4: Show if 60 < |G| < 90 then G is soluble.
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SOLUTIONS FOR CHAPTER 2

Exercise 1: (1) FALSE (it is the subgroup generated by
all the commutators);

(2) TRUE;

(3) TRUE;

(4) FALSE;

(5) TRUE;

(6) FALSE (An is a normal subgroup);

(7) TRUE;

(8) FALSE (A4 has V4 as a proper, non-trivial normal
subgroup);

(9) FALSE;

(10) TRUE.

Exercise 2:
@ Iy hxP =y Uy ™ Qy =y Hyx Ty X))y = xty ixy.

(b) x2y2[y, XILy, X, y1 = x?y*y"xtyx [y, xI7'y 'y, xly
= X2y y xyx [x, yly Ty, xly
= x2y?y X yx xty xyy ty Ixtyxy
= x2yxH(y xx Tty ) x (yy ) y i tyxy
= x2y X~y Ixtyxy
= X% (yxxy ™) xtyxy
= x2xlyxy
= Xyxy = (xy)?.

38



© [xy, ZT=IIx y1, 1 = [x, yI (") '[x, ylZ*

= [y, x] x 1273 x“tyIxy x1zx

=y Ixtyx x71z73x x“tyIxy x~1zx

=y IxtyztyIxyxtzx
By making the changes x—z, y—X, z—Y twice we get:

[z, X, y*] = x 27y~ IxTzxz7tyz and
Iy, z, X¥] = 2y zx iz tyzy xy
Combining we get:
[x,y, 21z, x, y'L.Iy, 2, X'
= y I yz lyIxyxzx. x iz ixy I tzxzyz
2y otz tyzyIxy
=y Ixtyz tyIxyxt (zx. x1z7Y) xy - Ixlzxz(yz
7y Y otz lyzyixy

=y Ixlyz -ty Ixyxt xyIxtzxzt zx -tz lyzy ixy
=y Ixyz lyIx (yxt xy ) xtz (xztzxt) z7yzyixy
=y xyz y oo 'zz ) yzy iy
=y Xy (2 yz) y iy
=y Xy iy
=1.
Exercise 3: Don = (A, B| A", B2, BA = A!B).
D,=C,andso Dy = 1.
D,=zC,xCyandso D, = 1.
Suppose that n > 3.
Case I: nis odd: Then Dan' = (A).
Case I1: nis even: Then Dy’ = (A"?),
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Exercise 4: The following table expresses |G| as p"m
where p is prime and is coprime to m. In all these cases
we can show that G is soluble by the same methods that
we used in Theorem 5.

Gl p nm |Gl p nm |G p n m
61 [61[1]1 70 |5 [1]14] 80 |2 |4]5
62 [31[1]|2 71 ]71(1]1 81 |3 |41
63 |7 [1]9 7213 [2]8 82 1411 |2
64 |2 |61 73 |73 |1]1 83 |83 |11
65 |13 |1 |5 74 37|12 84 |7 |1]12
66 |11 1|6 7|5 |23 8 |17 1|5
67 [67]1]1 76 (19|14 86 (431 |2
68 |17 |1 |4 771117 87 {2911 |3
69 23|13 78 13|16 88 (111 |8
70 |7 |1]10) 79 |79]1]1 89 8911

In fact all groups G with 60 < |G| < 120 are soluble,
making Ss the second smallest non-soluble group.
However we need extra techniques to deal with |G| = 90
and |G| = 112.
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