
 23 

2. SOLUBLE GROUPS 
 

§ 2.1. Conjugates and Commutators 
 I’ll begin by reminding you of some basic facts. Let 

x, y  G. The conjugate of x by y is xy = y−1xy. The map 

x→xg, for a fixed g, is an automorphism of G. We denote 

it by (g). 

 The map g→(g) is a homomorphism from G to 

the automorphism group Aut(G) of G and the image is 

denoted by Inn(G). The (g) are called inner 

automorphisms. Any other automorphisms are called 

outer automorphisms. 

 The kernel of the homomorphism  is clearly the 

centre Z(G) and so, by the First Isomorphism Theorem, 

G/Z(G)  Inn(G). 

 We also conjugate subgroups. If H  G and g  G 

then Hg = g−1Hg = {g−1hg | h  H}. Hg  G for all g  G 

and H  G if and only if Hg = H for all g  G. 

 

 Closely related to conjugates are commutators. The 

commutator of x and y is x−1xy, which we can write out 

in full as x−1y−1xy. We denote it by [x, y]. 

 The name derives from the fact that [x, y] = 1 if and 

only if x commutes with y. The number of commutators 

is a crude measure of how far the group departs from 

being abelian. 

 Two identities that hold for commutators are: 
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(1) [x, yz] = [x, z] [x, y]z and 

(2) [xy, z] = [x, z]y [y, z]. 

These can be proved by simply writing both sides of each 

equation in full. 

 

 Extended commutators are defined inductively by: 

[x1, x2, …, xn, xn+1] = [[x1, x2, …, xn], xn+1]. 

An interesting identity involving commutators of length 

3 is: 

[x, y−1, z]y [y, z−1, x]z [z, x−1, y]x = 1. 

Again one can simply write out the left-hand side of this 

identity and cancel it down to 1. But it’s a lot of work. 

The proof can be made easier by putting 

u = xzx−1yx, v = yxy−1zy and w = zyz−1xz. 

Then the identity becomes (u−1v)(v−1w)(w−1u) = 1. 

 

§ 2.2. The Derived Series 
 Unfortunately the set of commutators is not a 

subgroup, although it does satisfy two of the three criteria 

for a subset to be a subgroup. It contains the identity and 

it is closed under inverses, because [y, x] = [x, y]−1. 

However, in general, it isn’t always closed under 

products. 

 The simplest example is the free group on 4 

generators A, B, C, D | . Clearly the product of the two 

commutators [A, B] and [C, D] isn’t a commutator. 
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 It would be nice to give a small finite example of 

such a group, but the smallest such examples are two 

groups of order 96. 

 So we’re forced to define the derived subgroup of 

a group G to be G = the group generated by all the 

commutators. 

 

 Clearly (G  H) = G  H for all groups G, H. If 

H is a normal subgroup of G, what is (G/H)? Is it G/H? 

No, because any subgroup of G/H has to have the form 

K/H for some subgroup K of G. Is it G/H? No, because a 

subgroup of G/H has to have the form K/H where H  G. 

In fact (G/H) = GH/H. 
 

 In Volume 1 we proved that the derived subgroup 

of G is the largest normal subgroup for which the quotient 

group is abelian. This is usually the quickest way of 

finding it. We can continue the process, giving a whole 

series of subgroups. 

 We define G to be (G) and G = (G) etc. We 

denote the n-th derived subgroup (the result of n such 

steps) by G(n) so G can be written as G(3). 

 

In other words we define G(n) inductively by: 

G(0) = G; G(n+1) = G(n) for all n. 

This results in a chain of subgroups: 

G  G  G  G(3)  G(4)  ..... 
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Each subgroup is normal in the one before and the 

quotients of successive terms are abelian.  Such a series is 

called the derived series for G. 

 

Example 1: S4 = A4, S4 = V4 and S4 = S4
(3) = 1. 

Here V4 = {I, (12)(34), (13), (24), (14)(23)} is the normal 

subgroup of order 4. Because A4/V4 has order 12/4 = 3, it 

is cyclic, and hence abelian, so S4 = A4  V4. Thus S4 

has order 1, 2 or 4. It’s not 1 because A4 is not abelian. 

It’s not of order 2 because then A4/A4 would have to be 

cyclic of order 6, yet A4 has no elements of order 6. 

This leaves S4 = A4 = V4. Finally, since V4 is abelian 

S4 = V4 = 1. 

 

§ 2.3. Soluble Groups 
 The class of soluble groups is S = A. Thus a group 

G is soluble if and only if, for some n, there is a subnormal 

series from 1 to G, with each quotient being abelian. 

 The smallest 

possible value of n is 

called the soluble 

length of G. We denote 

the class of soluble 

groups of length at 

most n by Sn. Clearly 

S0 = I and S1 = A. The 

groups in S2 are called 

metabelian groups. 
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Theorem 1: 

(1) Subgroups of soluble groups are soluble. 

(2) Quotients of soluble groups are soluble. 

(3) If G/H is soluble and H is soluble then G is soluble. 

Proof: These follow immediately from Theorem 2 of 

Chapter 1 and the fact that A is both subgroup and 

quotient closed. ☺ 

 

 Clearly a group G is soluble if and only if G(n) = 1 

for some n. Moreover the value of the smallest such n will 

be the soluble length of G, as we now show. 

 

Theorem 2: If n is the smallest integer such that G(n) = 1 

then the soluble length of G is n. 

Proof: Let n be the soluble length of G. 

Then there exists a subnormal series 

1 = G0 < G1 < … < Gn = G 

such that each Gi+1/Gi is abelian and n is the smallest such 

value. Suppose that G(m) = 1 and m is the smallest such 

value. 

 Since the derived series has abelian quotients we 

have n  m. But Gi+1  Gi for all i and so G(n)  G0 = 1. 

Hence m  n. Thus m = n. ☺ 

 

 The soluble length of a subgroup or quotient group 

cannot exceed that of the group itself, but it may be less. 
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 There are two ways that a group can fail to be 

soluble. The derived series might continue to descend 

indefinitely. 

G > G  > G  > G(3) > G(4) > ..... 

 Of course this can only occur for an infinite group. 

But a group, even a finite one, can fail to be soluble by 

virtue of its derived series getting ‘stuck’ at some point, 

that is, where it reaches a subgroup that is not the identity 

but which, like the identity subgroup, is equal to its own 

derived subgroup. One very special way this can happen 

is for a non-abelian group to have no normal subgroups 

other than itself and the identity. 

 

§ 2.4. Simple Groups 
 A group G that has no normal subgroups, apart 

from G itself and 1, is called a simple group. Such groups 

are ‘simple’ so far as their lattice of normal subgroups 

goes. But in other respects most of them are far from 

simple, in the normal sense of the word. But let’s get the 

really simple simple groups out of the way. 

 Groups of prime order 

(necessarily cyclic) are 

simple groups. This is a 

direct consequence of 

Lagrange’s Theorem. These 

groups, together with the trivial group 1, are in fact the 

only abelian simple groups. (Why?). 

 So the only simple groups of real interest are the 

non-abelian ones. Among these the finite non-abelian 
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simple groups have attracted an enormous amount of 

interest over the last hundred years. A classification of the 

finite simple groups has now been finished. But has been 

an enormous task. 

 The Guinness Book of Records, in an earlier 

edition, mentioned only two theorems of mathematics. 

Pythagoras’ Theorem holds the record for the largest 

number of different proofs (about 350) and of course 

everybody has heard of Pythagoras’ Theorem, even if 

they can’t recall even one of these many proofs. But very 

few people have heard of the Classification Theorem for 

Finite Simple Groups. Its claim to fame is the sheer size 

of its proof. Nowhere does the proof appear in its entirety, 

and probably it will never appear complete in one 

publication. It is a mosaic of thousands of mathematical 

papers by hundreds of group theorists, all building on one 

another. If all the papers necessary for a complete proof 

were ever assembled in one place it is estimated that they 

would occupy about 15,000 pages (the equivalent of a 

large, multi-volume encyclopaedia)! 

 The theorem states that every finite simple group is 

either in one of 19 families or they are one of 15 sporadic 

or one-off examples. 

 

Among the infinite families of finite simple groups are: 

• Cp for prime p (these, and 1, are the only finite 

abelian simple groups). 

• An for n  5, the alternating groups 
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• PSL(n, pm) for a prime p and integers m and n 

where n  3 or n = 2 and q  4, which I’ll now 

define. 

 

PSL(n, pn) is SL(n, pm)/Z where SL(n, pm) is the group 

of all n  n matrices, with determinant 1, over the field 

GF(pm) of size pm, and Z is its centre, the set of all n  n 

scalar matrices I where  is an n’th root of unity. 

 

 In addition to the above three families, and a few 

more, there are 15 sporadic finite simple groups. These 

don’t belong to any one of the infinite families. 

 

 The smallest is the Mathieu group M11, of order 

7920. The largest sporadic groups is called the Monster, 

with order greater than  

8  1054.  

Another is the so-

called Baby Monster 

which only has order 

about 4  1033. 

 

 We now turn our attention to showing that An is 

simple for n  5. This fact is central to the proof of the 

insolubility of the quintic. Polynomials of degree 5 or 

more cannot be solved by radicals simply because An is 

simple for n  5. 
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§ 2.5. The Simplicity of An 
Lemma: An is generated by cycles of length 3. 

Proof: Every even permutation is a product of an even 

number of transpositions. We show that any product of 

two transpositions g = (x1 x2)(x3 x4) is a product of cycles 

of length 3. 

 

Case I the transpositions are disjoint: 

Then g = (x1 x2 x3)(x1 x4 x3). 

 

Case II: the transpositions have one symbol in 

common: say x4 = x1: Then g = (x1 x2 x3). ☺ 

 

Theorem 3: If n  5, all cycles of length 3 are conjugate 

in An. 

Proof: Of course any two 3-cycles are conjugate in Sn. 

But are they conjugate in An? As often happens it might 

be that the 3-cycles split into two conjugacy classes when 

we restrict ourselves to An. 

 Let g = (x1 x2 x3), h = (y1 y2 y3) be any two cycles of 

length 3. Then g = k−1hk for any permutation k that maps 

x1 to y1, x2 to y2 and x3 to y3. With at least two more 

symbols to complete the definition it’s possible to arrange 

for k to be even (just add a disjoint 2-cycle if necessary). 

 

 For n < 3 there are no cycles of length 3. For n = 3 

or 4 there are two conjugacy classes of cycles of length 3 

in An. ☺ 
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Theorem 4: An is simple for n  5. 

Proof: Suppose that n  5 and suppose that H is a proper 

non-trivial normal subgroup of An. 

If h  H and g  An then, since H is normal in An, 

[g, h] = (g−1h−1g)h  H. 

 We’ll show that H contains a cycle of length 3. 

Since all cycles of length 3 are conjugate to one another 

in An this would mean that H must contain every cycle of 

length 3 and so must contain every even permutation, 

contradicting the fact that H < An. 

Choose 1  h  H. 

 

Case 1 h = (…)…: Without loss of generality we 

may let h = (1234…)… 

Let g = (123). Then [g, h] = (132)(234) = (142). 

 

Case 2 h = ()() …: 

Without loss of generality let h = (123)(456)… 

Let g = (145). 

Then [g, h] = (154)(256) = (16254). Go to case 1. 

 

Case 3 h = ()()() …:  Then h2 = (). 

 

Case 4 h = ()()() … : Without loss of generality 

let h = (12)(34)(56) … and let g = (12345). 

Then [g, h] = (15432)(21436) = (153)(246). 

Go to case 2. 
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Case 5 h = ()(): Without loss of generality let 

h = (12)(34) and let g = (12345). 

Then [g, h] = (15432)(21435) = (12453). Go to case 1. 
☺ 

 

 In fact An is simple for all values of n except n = 4. 

For n  2,  An is trivial. For n = 3 it is cyclic of order 3. 

And A4 isn’t simple because it contains the proper, non-

trivial, subgroup 

V4 = {I, (12)(34), (13)(24), (14)(23)}. 

 Since A5 is the smallest non-abelian simple group 

it is the smallest group that is not soluble. 

 

§ 2.6. Small Groups are Soluble 
 All small finite groups are soluble. What do I mean 

by small? You’ll see. 

 Groups of prime order are cyclic, and hence 

soluble. Groups of order 2p are cyclic or dihedral and so 

are soluble. Since the centre of a non-trivial p-group is 

non-trivial we can see that all p-groups are soluble. The 

theory of Sylow subgroups is a powerful tool in dealing 

with other cases. 

 

Lemma: Suppose that |G| = pnm for some m, n and prime 

p which doesn’t divide m. Suppose that |G| > p. 

Suppose that for every integer of the form h = 1 + kp that 

divides m, either  h = 1 or h! < |G|. 

Then G is not simple. 
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Proof: Let The number of Sylow p-subgroups be h. 

Then h = 1 + kp and divides m. 

Hence h = 1 or h! < |G|. 

Case I: h = 1: Then G has a unique Sylow p-subgroup, P, 

which must be normal. If P = G then G is a p-group and 

so is not simple.  

Case II: h! < |G|: 

G permutes the Sylow p-subgroups by conjugation. 

Hence there is a homomorphism :G→Sh. Since |G| > |Sh|  

K = ker  > 1. If K = G then every Sylow p-subgroup is 

normal in G (and hence there is only one of them.) So K 

is a proper non-trivial normal subgroup and so is not 

simple.☺ 

 

Theorem 5: All group of order up to 59 are soluble. 

Proof: Let |G| = n < 60. 

If n = 1, G is soluble of length 0. 

The following table lists values of n up to 59, together 

with the values of p, n and m in cases where the above 

lemma shows that groups of order m are soluble. 

 

|G| p n m  |G| p n m  |G| p n m 

2 2 1 1  21 7 1 3  41 41 1 1 

3 3 1 1  22 11 1 2  42 7 1 6 

4 2 2 1  23 23 1 1  43 43 1 1 

5 5 1 1  24 2 3 3  44 11 1 4 

6 3 1 2  25 5 2 1  45 5 1 9 

7 7 1 1  26 13 1 2  46 23 1 2 

8 2 3 1  27 3 3 1  47 47 1 1 
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9 3 2 1  28 7 1 4  48 2 4 3 

10 5 1 2  29 29 1 1  49 7 2 1 

11 11 1 1  30 5 1 6  50 5 1 10 

12 2 2 3  31 31 1 1  51 17 1 3 

13 13 1 1  32 2 5 1  52 13 1 4 

14 7 1 2  33 11 1 3  53 53 1 1 

15 5 1 3  34 17 1 2  54 3 3 2 

16 2 4 1  35 7 1 5  55 11 1 5 

17 17 1 1  36 3 2 4  56 7 1 8 

18 3 2 2  37 37 1 1  57 19 1 3 

19 19 1 1  38 19 1 2  58 29 1 2 

20 5 1 4  39 13 1 3  59 59 1 1 

     40 5 1 8      

 

 The two values that are in bold don’t fit the lemma 

and we need to work a bit harder. 

 

|G| = 30: If a group of order 30 is not soluble it must have 

10 Sylow 3-subgroups and 6 Sylow 5-subgroups. 

Each Sylow 3-subgroup is a C3 and has 2 elements of 

order 3. Each Sylow 5-subgroup is a C5 and has 4 

elements of order 5. Moreover all these subgroups must 

be disjoint (only having the identity in common). This 

gives 20 elements of order 3 and 24 elements of order 5. 

But this is already more than |G|, a contradiction. 

 

|G| = 56: If G is not soluble we’d need to have 7 Sylow 

2-subgroups and 8 Sylow 7-subgroups. The Sylow 2-

subgroups have order 8. Thus there are 48 elements of 
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order 7, leaving just 8 elements of all other orders. Just 

one Sylow 2-subgroup would use up all of these and so 

there can’t possibly be 7 Sylow 2-subgroups. ☺ 

 

 So all groups of order less than 60 are soluble and 

A4, of order 60 is not soluble, so it is therefore the smallest 

non-soluble group. 

 

 In my notes on Representation Theory I show that 

all groups of order paqb, where p, q are distinct primes, 

are soluble.  This would have greatly simplified the above 

analysis. However that theorem requires a considerable 

amount of representation theory and number theory to 

prove. 

  



 37 

EXERCISES FOR CHAPTER 2 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) The derived subgroup is the set of all commutators. 

(2) The inverse of a commutator is a commutator. 

(3) A conjugate of a commutator is a commutator. 

(4) The product of two commutators is a commutator. 

(5) G/G is always abelian. 

(6) Sn is a simple group for all n. 

(7) If G is a non-abelian simple group G = G. 

(8) An is simple for all n. 

(9) (G/H) = G/H. 

(10) All groups whose order is less than 60 are soluble. 

 

Exercise 2: Prove that the following identities hold for 

commutators: 

(a) [y−1, x]y = [x, y]; 

(b) (xy)2 = x2y2[y, x][y, x, y]; 

(c) [x, y, yz].[y, z, x−1] = 1. 

 

Exercise 3: If n  1, find D2n. 

 

Exercise 4: Show if 60 < |G| < 90 then G is soluble. 
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SOLUTIONS FOR CHAPTER 2 
Exercise 1: (1) FALSE (it is the subgroup generated by 

all the commutators); 

(2) TRUE; 

(3) TRUE; 

(4) FALSE; 

(5) TRUE; 

(6) FALSE (An is a normal subgroup); 

(7) TRUE; 

(8) FALSE (A4 has V4 as a proper, non-trivial normal 

subgroup); 

(9) FALSE; 

(10) TRUE. 

 

Exercise 2: 

(a) [y−1, x]y = y−1[y−1, x]y = y−1(yx−1y−1x)y = x−1y−1xy. 

 

(b) x2y2[y, x][y, x, y] = x2y2 y−1x−1yx [y, x]−1y−1[y, x]y 

                                 = x2y2 y−1x−1yx [x, y]y−1[y, x]y 

                                 = x2y2 y−1x−1yx x−1y−1xyy−1y−1x−1yxy 

                                 = x2yx−1 (y xx−1y−1) x (yy−1) y−1x−1yxy 

                                 = x2y x−1xy−1x−1yxy 

                                 = x2 (yx−1xy−1) x−1yxy 

                                 = x2x−1yxy 

                                 = xyxy = (xy)2. 
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(c) [x, y, zx] = [[x, y], zx] = [x, y]−1(zx)−1[x, y]zx 
                  = [y, x] x−1z−1x x−1y−1xy x−1zx 

                     = y−1x−1yx x−1z−1x x−1y−1xy x−1zx 

                     = y−1x−1yz−1y−1xyx−1zx 

By making the changes x→z, y→x, z→y twice we get:        

        [z, x, yz] = x−1z−1xy−1x−1zxz−1yz and 

       [y, z, xy] = z−1y−1zx−1z−1yzy−1xy 

Combining we get: 

[x, y, zx].[z, x, yz].[y, z, xy] 

= y−1x−1yz−1y−1xyx−1zx. x−1z−1xy−1x−1zxz−1yz 

                                                       . z−1y−1zx−1z−1yzy−1xy 

= y−1x−1yz−1y−1xyx−1 (zx. x−1z−1) xy−1x−1zxz−1(yz 

                                                       . z−1y−1) zx−1z−1yzy−1xy 

= y−1x−1yz−1y−1xyx−1  xy−1x−1zxz−1 zx−1z−1yzy−1xy 

= y−1x−1yz−1y−1x (yx−1  xy−1) x−1z (xz−1 zx−1) z−1yzy−1xy 

= y−1x−1yz−1y−1(xx−1zz−1) yzy−1xy 

= y−1x−1y (z−1y−1yz) y−1xy 

= y−1x−1yy−1xy 

= 1. 

Exercise 3: D2n = A, B | An, B2, BA = A−1B. 

D2  C2 and so D2 = 1. 

D4  C2  C2 and so D4 = 1. 

Suppose that n  3. 

Case I: n is odd: Then D2n = A. 

Case II: n is even: Then D2n = An/2. 
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Exercise 4: The following table expresses |G| as pnm 

where p is prime and is coprime to m. In all these cases 

we can show that G is soluble by the same methods that 

we used in Theorem 5. 

 

|G| p n m  |G| p n m  |G| p n m 

61 61 1 1  70 5 1 14  80 2 4 5 

62 31 1 2  71 71 1 1  81 3 4 1 

63 7 1 9  72 3 2 8  82 41 1 2 

64 2 6 1  73 73 1 1  83 83 1 1 

65 13 1 5  74 37 1 2  84 7 1 12 

66 11 1 6  75 5 2 3  85 17 1 5 

67 67 1 1  76 19 1 4  86 43 1 2 

68 17 1 4  77 11 1 7  87 29 1 3 

69 23 1 3  78 13 1 6  88 11 1 8 

70 7 1 10  79 79 1 1  89 89 1 1 

 

 In fact all groups G with 60 < |G| < 120 are soluble, 

making S5 the second smallest non-soluble group. 

However we need extra techniques to deal with |G| = 90 

and |G| = 112. 

 


